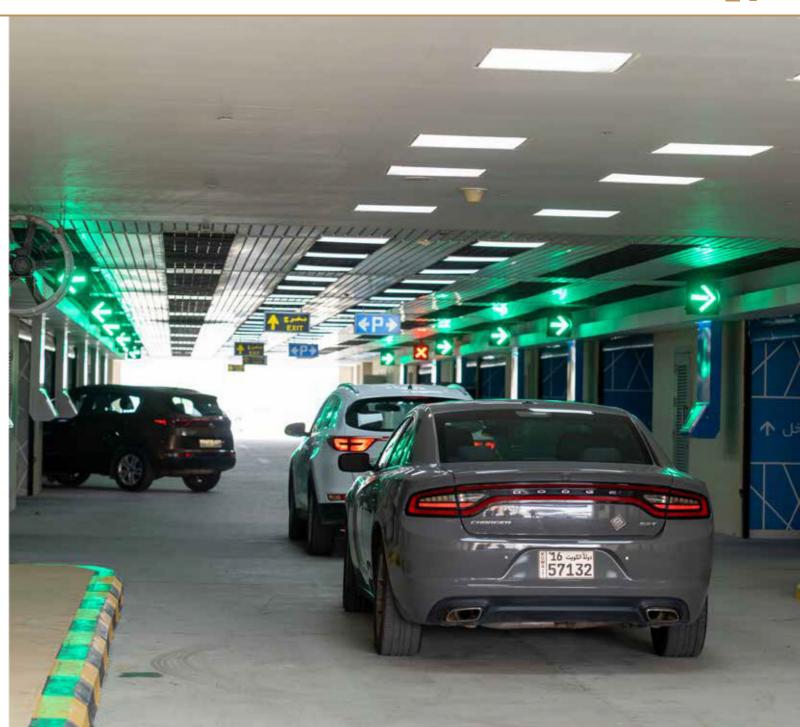


MISSION STATEMENT -


We believe mankind deserves a better parking experience – one with less hassle, with better than valet-like convenience, and one that offers safety and security for themselves and their vehicle.

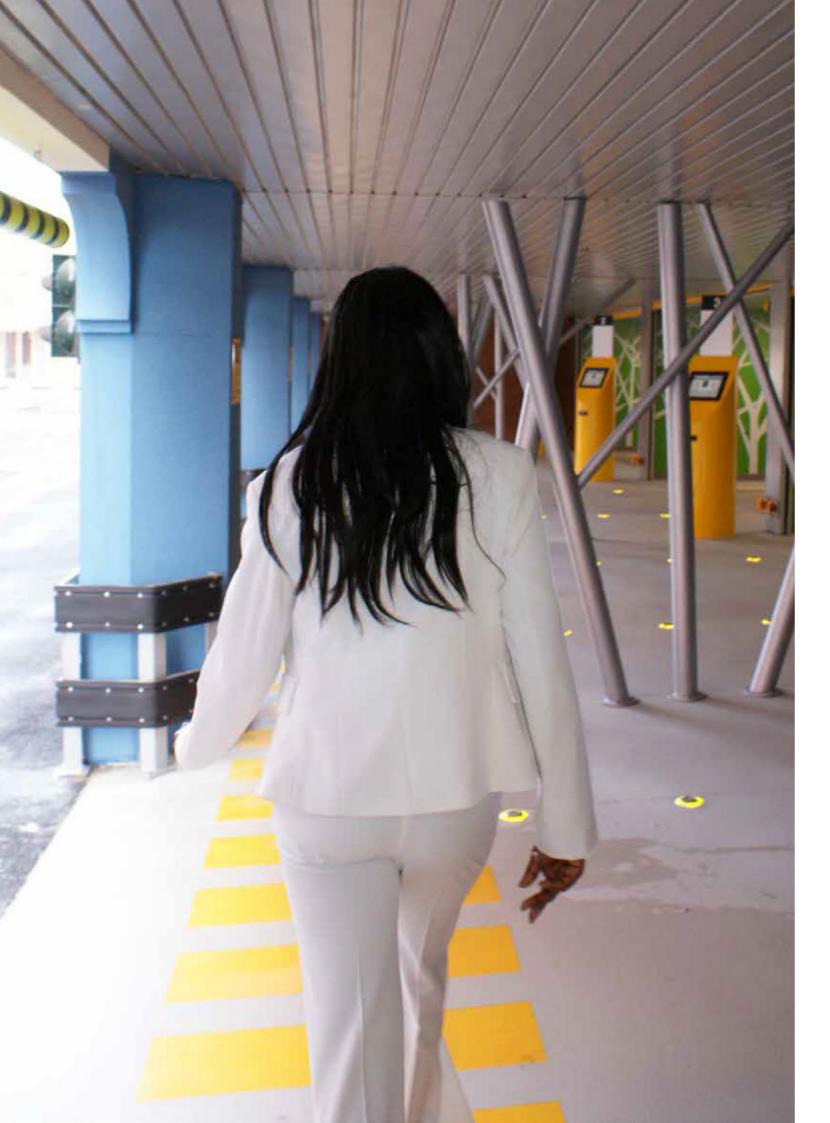
A complete solution that provides more green space and community places.

A truly workable and proven technology solution that brings more profit and a higher return on capital for investors despite being a responsible and sustainable way to improve the environment.

Therefore, Robotic Parking Systems Inc. continues to strive for the highest customer and owner satisfaction by providing reliable technology with true redundancy that performs consistently even under the heaviest traffic demands worldwide.

ALWAYS AHEAD - WITH THE BIGGEST IDEAS IN AUTOMATED PARKING

ROBOTIC PARKING "FIRSTS"


Since 1994, Robotic Parking Systems has celebrated many "firsts" in the automated parking industry. Here are a few examples:

- We are the automated parking company that coined the term "robotic parking" to describe the new technology and used the
- term for our company and product names. First to offer a 10+ year guarantee on an
- · Eustraled | daily system | washing a parating repays for marking optimes exisindependent martiens.
- Built the first automated parking systems in The ORIGINAL robotic parking not a copy. the US (2000) and the Middle East (2008). • Robotic Parking Systems' technology
- Played a key role in developing a) NFPA 88A fire safety codes for automatic parking
- Guinness World Record holder for Largest Automated Parking Facility not just once but twice. • Developed the FIRE BOX - a revolutionary

- Leader in the integration of emerging transportation technologies including association with Bosch for autonomous driving vehicles.
- First to develop and implement an automated electric vehicle (EV) charging station.

• Certified highest peak traffic throughput (cars อ่ากลษก) ชื่อ ส่งสมัยสมาชารสาย issues in • Instrumental in the development of National Parking Les ociating 'ទូ នាមខ្មែន។ ប្រាសា & Operation of Automated Parking Facilities. the first "fire safe" garages in the world. This sets a new standard in safety and innovation for residential and commercial properties.

AFFILIATIONS & CERTIFICATIONS

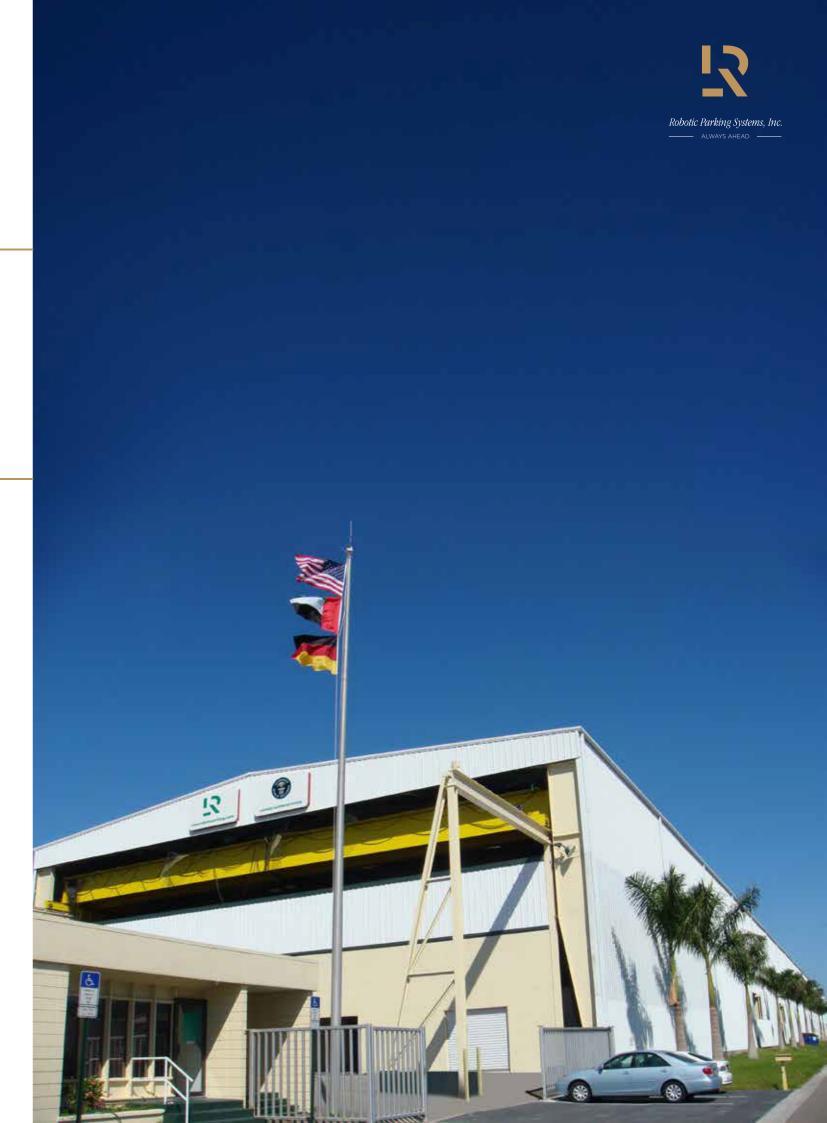
Robotic Parking Systems is affiliated with key companies and organizations in technology, automation, parking, fire safety, environmental and more.

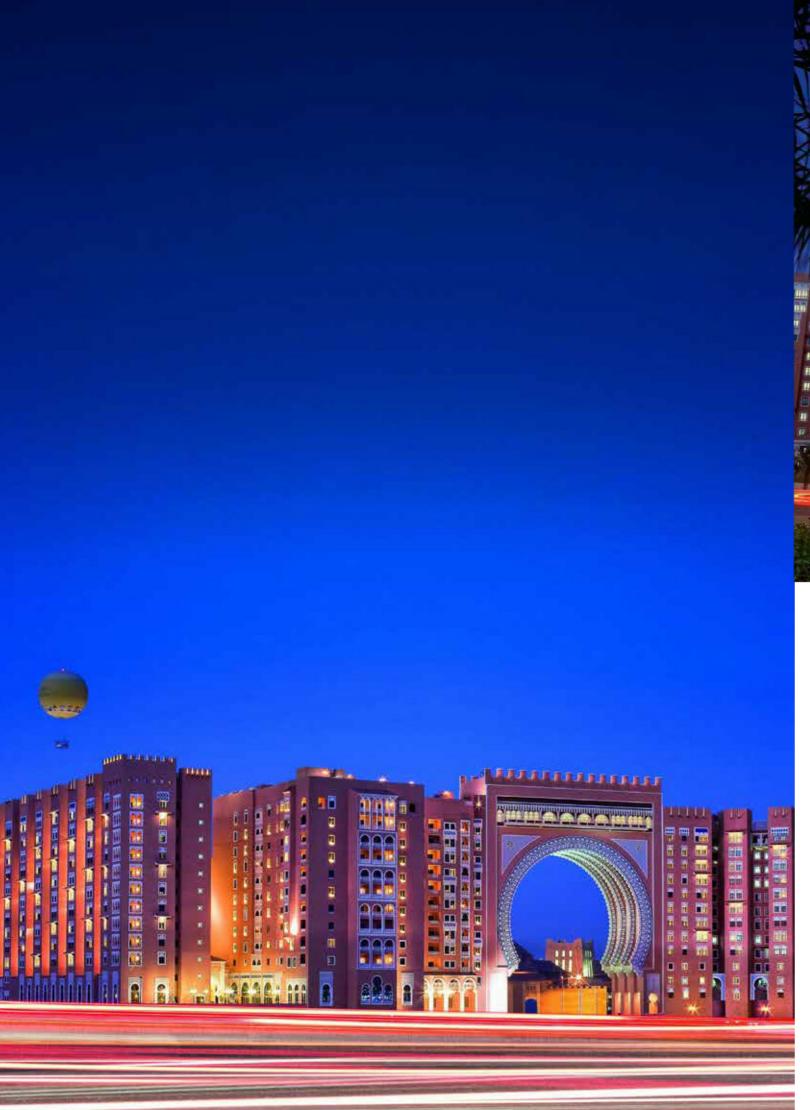
We are ISO 9001:2015 certified and hold a UL Certificate of Compliance for Industrial Control Panels.

Robotic Parking's President serves on the National Fire Protection Association (NFPA) Committee on Garages and Parking Structures.

ACHIEVEMENTS & REWARDS

- Robotic Parking Systems Inc has built about 8,000 fully automatic parking spaces - more than anyone else in America.
- Two time winner of the Guinness World Record for the Largest Automated Parking Facility. | 2013 and 2018
- We've built the largest and fastest automated parking garages in the world. As the original US manufacturer, we designed extreme reliability and redundancy into every aspect of the automatic parking. A Robotic Parking System is more economical, greener and safer than any other urban method of parking.
- Real Estate Forum | Technology Influencers | 2021
- United States Department of Commerce | Export Achievement Certificate
- Acquisition International | Business Excellence Awards | Most Innovative Parking Systems Provider USA | 2023
- Al Global Media | Innovation in Business Awards | Leading Technology Innovator in Automated Parking | 2023
- Frost & Sullivan | New Product Innovation Award in the Smart Parking Industry | 2023

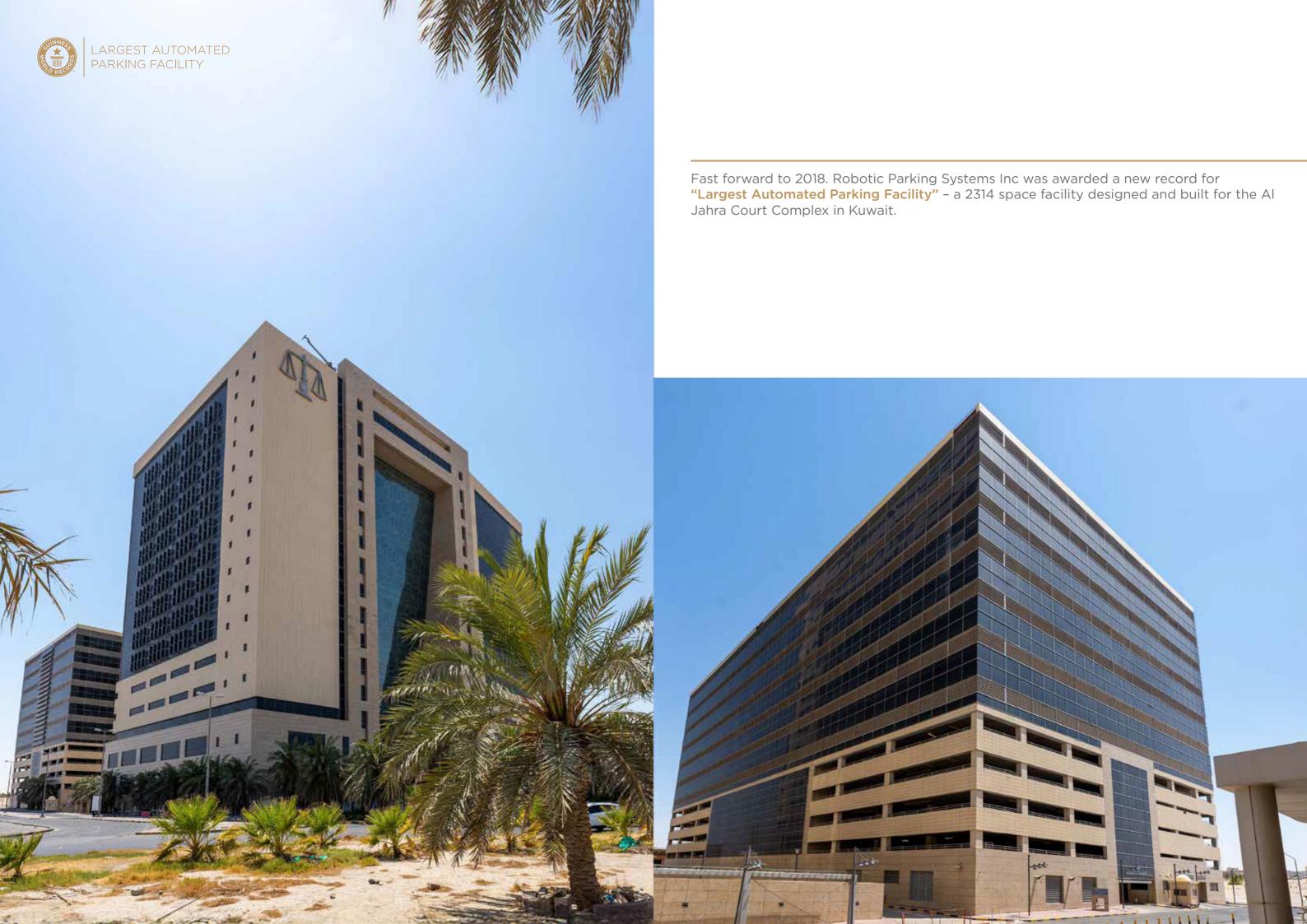

Founded in 1994, US-based Robotic Parking Systems, Inc. pioneered the development of the high-capacity, scalable automated parking garage that reduces the space needed for parking by 50% or more. The speed and efficiency of the patented technology creates opportunities for projects requiring from hundreds up to several thousand parking spaces to profit from the space-saving, environmental and safety benefits of automated parking.


The management team of Robotic Parking Systems incorporates more than 300 years of cumulative engineering experience in the development, the construction and the operation of automated transport systems. Strategic partnerships with high-tech automation firms ensure the permanent know-how transfer in the field of state-of-the-art electronic management and control systems.

THE ROBOTIC PARKING SYSTEM OFFERS:

- advantages for owners and the parking public. Utilizing vertical integration, our machines are
- More parking spaces within the same volume of garage.
- Better parking experience.
- Increased safety and security for individuals and their cars.
- Highest throughput and fastest retrieval of multiple cars simultaneously in the industry.
- True redundancy and reliability.
- Proven in multiple facilities over more than 25 years.
- Automation is based on international automation experts, General Electric Intelligent Platforms, Emerson and Bosch.

- An innovative parking solution with premium
 Integration with emerging technologies.
 - manufactured from raw steel to finished product at the company's headquarters in Clearwater, Florida, USA. We use the highest quality electromechanical components. Our in-house software development team writes project specific code to interface with GE's automation software engine.
 - Quality control is maintained using our 114-car research and testing garage located within our 100,000 sq. ft. production plant. This facility allows us to test and certify every machine before it's shipped to the customer's job site.


The World's Luxury Guide named the Robotic Parking System at Ibn Battuta Gate in Dubai the most luxurious automated garage in the world.

Robotic Parking Systems designed and built the machinery and automation for this facility.

OUR TEAM -

A company's success is not solely determined by its products or services, but by the people who guide its vision and uphold its values.

Behind every achievement is a team of dedicated individuals whose leadership, collaboration, and expertise are the foundation of our progress. Our engineering team alone brings a combined accumulated experience of 300 years, a testament to the depth of knowledge and skill driving our innovation.

It is their collective commitment that transforms challenges into opportunities and ideas into realities, ensuring the long-term success and growth of our organization.

DAVID TUFAROInterim Chief Executive Officer

MARY LOU DEWYNGAERT
Chief Marketing Officer

RAMANATHAN RAMASUBBU
Chief Operating Officer

RAJEEV ASWAL
Chief Technology Officer

PRAVEEN KAMATSoftware Development and Deployment

OSAMA FARES
Structural Design Manager

QADEER AHMEDSite Installations & Operations Manager

SANDRA PORTERAccounting Manager

SPACE IS NOT A LIMITATION
MINIMIZE THE IMPACT OF PARKING

BENEFITS AND ADVANTAGES

- Better space utilization: Automated parking takes significantly less space than that required for a conventional garage or surface parking. This leaves space for additional development on the site, or reduces the garage volume significantly while maintaining the space counts.
- Lower overall operating/maintenance costs: Lower costs when taking into consideration <u>all</u> costs, including personnel, electricity, ventilation costs, concrete repairs, cleaning, insurance, etc. (as compared to a closed conventional garage with valet operation.)
- Highest possible level of security: Safe for individuals. All activity occurs at ground / entry level
 in front of the garage. This greatly reduces the chance of muggings or assaults. The Robotic
 Parking System is the safest possible parking facility that exists.
- Better care and safety of vehicles lower liability insurance: No one enters the inside of the garage. Dings, scratches, vandalism and thefts are eliminated reducing claims and repair costs. Cars are transported on pallets which eliminates possible undercarriage damage.
- Greater level of convenience: All ground floor access. No long walks to access cars. Compactly located in one small footprint. Robotic Parking Systems provide a premium valet service as no one except the driver has access to the car. Drivers enjoy valet ease but keep the keys.
- Access to garage via a mobile app, EZ pass (Hands Free Radio Frequency Tag) or ID # possible:
 Simple, easy to use method of access. No excessive training required
- Pollution free: No cars run inside the garage. No emissions.
- Flexible facade and terminal area: The design of the facade and terminal area is completely flexible and can accommodate any materials. This provides planners the opportunity to design a "sense of arrival" experience.

- Advanced technology: Utilization of the latest in electronics and automation improves overall productivity and reliability.
- Increased visibility: Offering features that others don't will bring increased revenues!
- Leasing of parking spaces: A lease model can be established. Monthly lease payments can be deducted directly as an expense and may be an interesting economical model. Alternatively, depreciation in US is 14 % p.a.
- Reusable / recycling: Robotic Parking System components can easily be moved to another site. If using a steel supporting structure, it can also be disassembled and put up at another location. The only items lost would be the foundation and infrastructure.
- Storage: Parking spaces that are not needed can be easily transformed into storage with containers (140 SF / 13 m2) that can be climate controlled. Containers are transported to and from the terminals for easy loading / unloading.

One element has become very clear – emerging transportation technologies require that the garage of the future be smart. To reach new levels of technology integration, the company has oriented our automatic parking system around the term CASE.

INTEGRATED INTO EMERGING TECHNOLOGIES

- Connectivity: Through Cimplicity® software from GE Automation, Robotic Parking Systems are connected and can receive and share information on an open network.
- Autonomous Driving: We developed a partnership with Bosch to facilitate the parking of "autonomous driving cars."
- Sharing and Services: Communications exist to handle car sharing, fleets and servicing cars. Electrification: Designed to include automatic electric car charging stations. The owner just plugs the cable into the entry terminal to the car.
- Bonus: With a Robotic Parking garage a Digital Twin is already included.

FOUR MAJOR TRENDS CHANGING THE AUTOMOTIVE INDUSTRY

- CREATING MORE SPACE FOR **DESIGN, DEVELOPMENT AND COMMUNITY**
- CHANGING THE DYNAMICS OF LAND USE

GREEN SPACE AND COMMON AREAS

GENERAL SYSTEM DESCRIPTION & SPECIFICATIONS The Robotic Parking System is an interconnected system of machines, electronics, automation and software components designed to easily and rapidly store and retrieve vehicles. Every Robotic Parking System includes the following items and features.

PROJECT SYSTEM SPECIFICATIONS

In addition to the following General System Description, detailed Project specific specifications are outlined in the Project Quotation.

USER INTERFACE, DIGITAL PLATFORM, & ACCESS SYSTEM

- The Robotic Parking Control System software has been proven over millions of parking transactions and more than 20 years in operation. It is based on the GE automation engine CIMPLICITY that operates huge container terminals as well as automobile assembly lines around the world on a 24/7 basis.
- Kiosks installed outside the terminals allow drivers to initiate car storage. Kiosks in the lobbies allow drivers to retrieve their cars. These kiosks are equipped for use with contact-less RFID cards, fobs, or an NFC app. The Robotic Parking System phone app can be used to trigger the storage and retrieval process. The automated system can also be integrated with various payment options using either credit card or on-line transactions.

NFC Chip Card

Phone APP (Apple & Android)

FOB

INDEPENDENT SIMULTANEOUS MOVEMENTS

The system is capable of performing separate x, y and z movements simultaneously through different, multiple robots. This feature – introduced by Robotic Parking in 1998 – ensures the highest possible peak traffic capacities. Additionally, in the event that a single machine fails, another machine is immediately capable of executing operations in its place, ensuring that the garage as a whole never stops operating.

PALLET ADVANTAGES

- 1. Pallets are steel plates with grooves that transport cars. Grooves in the pallets help drivers easily position their cars. Pallets are nominally 19' long and 7'-4" wide (2235 x 5791mm)
- 2. Pallets prevent drippings of oil, acids, air-conditioning condensation, salt water, snow and ice, or sand onto the parking system machinery, concrete surfaces or the cars stored inside the facility. Tracks collect and hold up to 40 gallons (151 liters).
- 3. Pallets eliminate all direct contact with the car and guarantee that no machinery ever touches the vehicle. This is especially important for cars that have a lower floor clearance like electric vehicles or cars with an altered chassis. This design feature ensures one of the highest standards of product liability protection for automated parking facilities.
- 4. Pallets are a necessary and integral part of Robotic's new fire safe garage design.

ACCOMMODATION OF VEHICLE SIZES & WEIGHTS

The system can accommodate cars that fit onto a pallet 19 feet (5791 mm) long x 88 inches (2235 mm) wide and have a maximum weight of 3 metric tons. Multiple height clearances available: 6.7 feet (2.05 m) for SUV's and 5.1 feet (1.55 m) for sedans based on customer's choice. A variety of sensors measure and filter out cars that do not meet height, length, width or weight limitations.

KEY DETAIL: FIT FOR VEHICLE WEIGHT & GROUND CLEARANCE ROBOTIC PARKING SYSTEMS (RPS) CAN PARK CARS THAT SOME OTHERS CAN'T

BASED ON MAXIMUM CURB WEIGHT: RPS CAN TAKE UP TO 6,600 lbs.

BASED ON LOW GROUND CLEARANCE: RPS HAS NO LIMITATION ON GROUND CLEARANCE

KEY DETAIL: FIT FOR VEHICLE WIDTH & LENGTH ROBOTIC PARKING SYSTEMS (RPS) CAN PARK CARS THAT SOME OTHERS CAN'T

BASED ON MAXIMUM WIDTH OF CARS: RPS CAN TAKE CARS UP TO 88" (2.235m)

BASED ON MAXIMUM LENGTH OF CARS: RPS CAN TAKE CARS UP TO 228" (5.792m)

SYSTEM REDUNDANCY

The Robotic Parking System provides true redundancy so that the failure of any individual machine and/or robot will not interrupt operation.

- Every machine has redundant major drive components inherent in itself. Additionally, we install at least two machines of each kind that can perform the same tasks in an area.
- Redundant computer servers with fail-over in micro seconds. If one server fails, the redundant server automatically takes over and contains the exact same data as the primary server in real time (hot swappable).
- A back-up emergency power generator takes over in case of a power outage with a minimum capacity of 50% of the total connected electrical load.

True redundancy - which translates into system reliability - is achieved through several factors:

- Rather than building a complicated machine, provide multiple simple machines that use the least possible number of moving parts.
- Always apply the concept of the one out of two failures.
- Provide easy to use diagnostic tools that go into the depth of each and every automation component.
- Ensure maintenance and operation alerts are in place, and the tasks are actually performed.

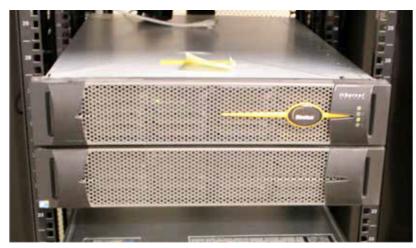
AUTOMATION SOFTWARE

Robotic Parking Systems use the proven automation platform from General Electric (GE). The automation software (Cimplicity®) is in use worldwide to power automation processes with high complexity and a high number of independent users and transactions. Cimplicity is successfully installed and running automobile assembly lines around the world including GM and Ford. It is also used in many seaports to handle the movement of thousands of containers on a 24/7 basis.

Robotic Parking Systems has had a strategic partnership with General Electric since 1998 and much of the electronics, controls and the software platform of the Robotic Parking System are off the shelf components manufactured by GE and other major European manufacturers.

Cimplicity and the Robotic Parking software and diagnostic tools use the Microsoft Windows® platform.

Robotic Parking Systems' Graphical User Interface (GUI) provides an intuitive, user-friendly interface with real time display of the entire automated parking system including machine movements and system configurations. All machinery, equipment and electronics including entry / exit displays, kiosks, cameras, sensors and all other components of the facility are controlled as one complete integrated system from the main server via a minimum 100 Mbps communication network.


The software records details on each vehicle parked such as vehicle ID, vehicle time of entry and exit as well as two (2) high resolution snapshots of the vehicle upon entry and exit.

FAULT TOLERANT SERVER / COMPUTER

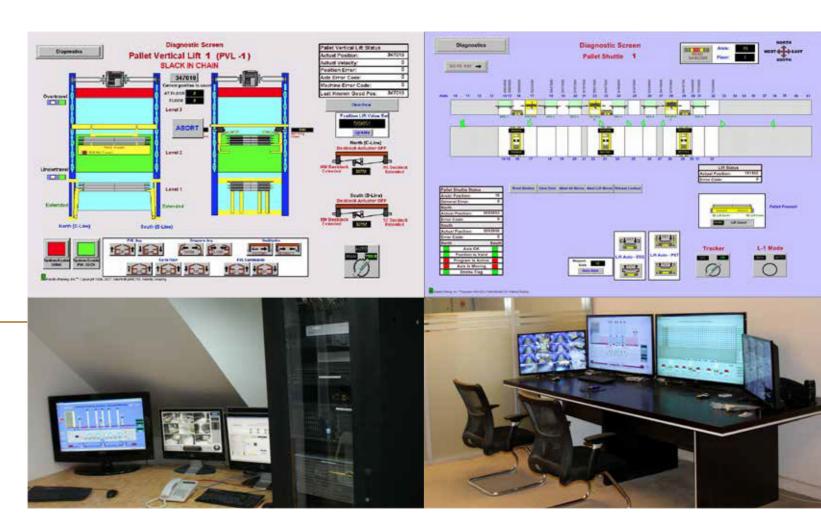
Stratus offers ft Server® systems (fault tolerant) in a standard dual modular redundancy (DMR) mode which uses two CPU-memory assemblies (motherboards). These systems deliver levels of availability unrivaled by competitive cluster systems. DMR systems are designed for "five nines" (99.999%) of availability, and field experience to date shows performance that surpasses these design goals.

Unique to the industry, ft Server mirrored hardware components process the same instructions in "lockstep" – at the same exact time. In the event of a component malfunction, the mirrored component continues processing without missing a beat. ft Server provides a "single system view" that presents and manages replicated ft Server components as a single system image. Applications run without modification and only a single copy of the software is required. With one system view, installation, configuration and management is simplified.

Hot-swappable customer replacement units (CRUs) are easily replaced, without user intervention or any special tools, while ft Server and your applications continue to run.

SYSTEM MONITORING & DIAGNOSTICS

The Robotic Parking System can be monitored or operated locally or remotely. It includes early warning indicators and five (5) levels of alarms that can be sent to a local computer and automatically forwarded to smart phones or tablets.


The comprehensive diagnostics package allows troubleshooting and preventative diagnostics to be run from any location. A diagnostic overview screen shows real time motion of all machines and their current position. Diagnostic screens for each individual machine show the current status of all sensor feedback (with good or bad indications), torque values, exceeding current, number of revolutions or travel inches (mm), hours in operation and more. These measurements are all accumulated against a threshold value. Once the manufacturer set threshold is approached, a message appears on the screen in the control room alerting for upcoming maintenance tasks on specific machines.

A high-speed Internet connection and a laptop with installed software are the only prerequisites.

The system can also easily contact and exchange data with the facility BIM (Building Information Modeling) through comma delineated files.

VEHICLE TRACKING & CONTROL METHODOLOGY

- Fully automated systems use management software as well as a communication platform to perform storage and retrieval functions. This is a high-level software program that is built to perform multiple movements in the X, Y, and Z axes simultaneously. In this design up to 100 vehicles can be in motion at any time.
- The software offers sophisticated routing algorithms, diagnostics, and high-level warning systems to avoid downtime. The software also serves as a communication platform that allows interactions with outside applications from smartphones to traffic advisories (and more).
- Software screens below show a graphical representation of geographic locations and real-time movements of robots and cars for vehicle tracking and control.
- The software is built such that it is user friendly and needs minimum training and support for the operator.
- Robotic Parking System's HMI (Human Machine Interface) is one of the most sophisticated diagnostics systems in the industry. Its patented high level warning systems provide alerts well in advance of failures to help maintain a high level of uptime.

TRAFFIC FLOW & LIVE TRAFFIC CONDITIONS

The Robotic Parking System controls the Entry / Exit Terminals according to live traffic conditions outside the garage. The system obtains feedback from installed external traffic sensors and automatically adjusts to ensure lowest wait time for parking as well as retrieval requests.

For safety and to improve the flow of traffic, cars always enter and exit from the facility by driving forward. Additionally, a one-way traffic flow is recommended for an optimum seamless operation.

THIRD PARTY TESTING OF THROUGHPUT CAPACITY: FIT FOR PURPOSE

RPS will provide an independent third party verification for the Robotic Parking Systems' Throughput (or Peak Traffic) Performance.

Throughput capacity is the total number of cars per hour that can be handled in a combination of inbound and outbound vehicle traffic. Additionally, the average retrieval time for a single vehicle retrieval will also be measured and be compared to the contractual agreed timeline.

The peak traffic throughput measurement is much more critical in the day-to-day operations of an automated garage than a single vehicle retrieval time. No other manufacturer in the automatic parking industry has this level of performance verification by an independent third party. The right selection of peak traffic capacity is most critical to the overall FIT FOR PURPOSE objective for the development.

RELIABILITY / MTBF

Historical average performance under a Robotic Parking System maintenance and operations contract shows a reliability and uptime rating of 99.99%. This statistic covers a period of four consecutive years in one parking facility, more than one million parking transactions and operating on a 24/7 basis.

STATISTICS AND PEAK TRAFFIC

- Machine time (MT) is measured as the time that it takes for the system to accept the next vehicle in the same Terminal after the previous user had initiated the storage process.
 Depending on the installed machinery components, MT ranges between 40 and 50 seconds.
 MT is a fixed constant dictated by the system design.
- 2. Dwell Time (DT) can vary widely depending on the customer. It is very clear that the impact of DT on the overall peak traffic handling of an automated parking system can be significant. Therefore, as per the National Parking Association (NPA) guide, it is safe to consider 45 seconds as the appropriate DT for the storage and retrieval process. This is an important design criterion since user DT is included in the calculation of the peak volume capacity of the garage.
- 3. The noise level inside the space of the RPS facility in full operations mode is 65 dB(A). Outside the actual parking system building, the intrusive sound source of the system operation is typically below the ambient noise level.
- 4. The most important operational design parameter for a parking facility, per NPA (National Parking Association Washington D.C.), is the FIT FOR PURPOSE aspect. For that reason, NPA published a table for designers that addresses the Peak Traffic requirements depending on the use of parking, expressed as a percentage of the facilities' capacity of parking spaces. It is this single chart that determines a facility's operational success:

Table 1. Peak Hour Arrival/Departure Traffic Volume (percent of parking capacity)

Land Use	Peak AM Inbound	Peak Am Outbound	Peak Pm Inbound	Peak PM Outbound
Residential	5-10	30-50	30-50	10-30
Hotel/Motel	30-50	50-80	30-60	10-30
Office	40-70	5-15	5.20	40-70
General Retail	20-50	30-60	30-60	30-60
Convenience Retail	80-150	80-150	80-150	80-150
Medical Office	40-60	50-80	60-80	60-90
Hospital Visitors	30-40	40-50	40-60	50-75
Hospital Employees	60-75	5-10	10-15	60-75
Airport				
Hourly Lot	50-75	80-100	90-100	90-100
Daily Lot	5-10	5-10	5-10	5.10
Special Event	80-100			80-200

Source: PARKING STRUCTURES: PLANNING, DESIGN, CONSTRUCTION, MAINTENANCE, & REPAIR, Third Edition, by Chrest, et al, Kluwer Academic Publishers, Norwell, MA 2001

This resulting Peak Traffic expressed in "Cars / Hour" is what a parking facility needs to be designed for and actually be able to achieve in real life conditions.

5. For that purpose, Robotic does, in fact, conduct a Third Party Testing and Verification process after installation in order to show compliance with these requirements and the contract stipulations.

CODE ADHERENCE

Robotic Parking Systems Inc adheres to the following codes and quality standards:

- National Parking Association (NPA) / Automated and Mechanical Parking Association (AMPA) "Guide to the Design and Operation of Automated Parking Facilities."
- ASME B30.13 "Storage/Retrieval (S/R) Machine and Associated Equipment."
- ASME B 20.1 "Safety Standard for Conveyors and Related Equipment"
- All electrical equipment is ETL or UL listed and approved.
- Fire Protection Design per NFPA 88A and/or FM 08-34.
- Ventilation of 2 ACH per NFPA 88A -2019 via natural chimney effect.
- UL / ETL approvals for electrical panels.

DESIGN & PERMITS

Structural steel, electrical (LV & HV and with EV charging if desired) and sprinkler designs per NFPA 88A required for obtaining building permits are included in this offer. In a supply and installation contract, Robotic Parking Systems will provide these project designs to the employer for incorporation in the employers' consultants submittals to the authorities having jurisdiction to obtain the permits and approvals as needed.

SECURITY

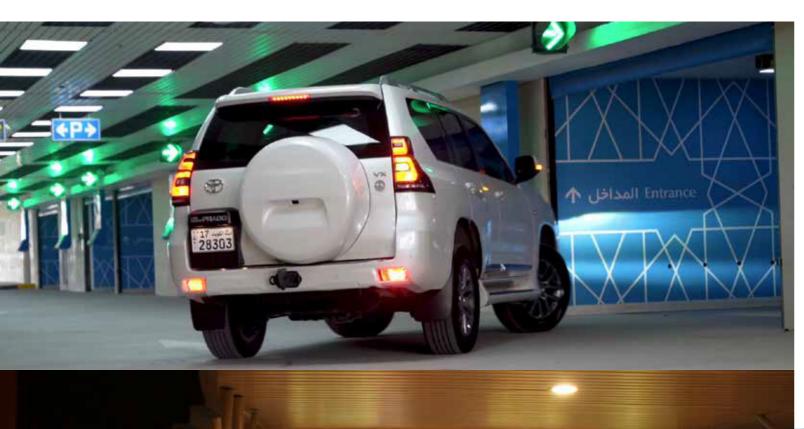

The area where vehicles are stored is a closed system with no human access except for authorized maintenance personnel. This prevents damage to cars, theft, robbery or vandalism within the garage.

Surveillance cameras are placed throughout the facility and inside the storage compartment in strategic locations. These cameras are connected to a 48-hour recording CCTV with 42-inch display screens for all camera images. These surveillance cameras are in addition to the cameras located in every entry / exit terminal.

TERMINALS AND NAVIGATION

- Incoming traffic on the drive way leading to the parking facility will be directed via green traffic lights into the available Terminals. For purposes of efficiently directing inbound and outbound traffic at any given moment, the software balances inputs from retrieval requests as well as sensors measuring incoming traffic volumes.
- Introducing a one-way traffic pattern increases the ease of traffic flow and is recommended.
- Embedded floor lights similar to airport taxi ways do enhance driver confidence and ease of entering the Terminal (see image on next page).
- Terminals are equipped with roll doors that automatically open when the car is in proximity.
- Average retrieval time for a single vehicle will not exceed an average of 180 seconds even under Peak Traffic operation conditions.

PATENTS


Robotic Parking Systems Inc holds multiple patents on the system in the US and other countries. These include US Patent numbers 5,669,753; 6,502,011; 6,662,077 and 6,851,921. Additional patents are pending.

ENTRY / EXIT TERMINALS (EES)

Entry / Exit Terminals allow parking and retrieving vehicles from the automatic parking garage through multiple points. The terminals are interchangeable with each capable of functioning as either an entry or an exit point that is dynamically controlled by the system software.

Vehicles enter and exit by driving forward. Cars are turned 180 degrees by the system automatically. Users never need to back up. Sensors measure and weigh vehicles to ensure that they do not exceed maximum parameters. High speed, industrial rollup doors and green/red traffic lights control access to each Entry / Exit Terminal. For safety, motion sensors and IP cameras ensure the terminal is clear of individuals before the parking process begins.

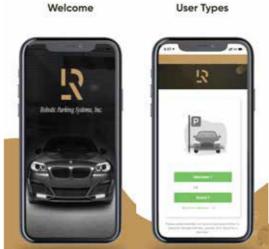
Entry / Exit Terminals have a minimum width of 16.3 feet / 4.978 m. A walkway of a minimum of 4 feet / 1.2 m wide is placed on each side of the vehicle pallet for easy entry and exit. The walls, ceiling and walkway appearance can be designed freely by the architect to match the developments' theme.

- · General lighting.
- Green / red traffic light outside of each Entry / Exit Terminal to indicate availability.
- External 12 feet (3.6 m) x 8 feet (2.4 m) and internal 8 feet (2.4 m) x 8 feet (2.4 m) high speed, industrial roll-up doors. For safety, once users have exited the terminal and no motion is detected in the area, the external doors close prior to raising internal doors to allow movement of the car into the automatic parking system.
- 42-inch LCD screen that provides parking guidance and instructions.
- Six (6) laser scanners ensure accurate measurement of the vehicle for acceptance into the parking system and for correct positioning on the pallet.
- Two (2) IP cameras with motion detection and a minimum of 10 megapixels. These cameras capture two (2) high resolution photos of every car entering and exiting the system to document vehicle condition. These images are stored on the server for at least 72 hours and can be key to disproving potential damage claims.
- Motion detectors ensure that parking cannot be initiated while people are inside the Entry / Exit Terminal.
- Emergency stop button is an additional safety feature.
- Load cells for vehicle weight measurement to ensure the vehicle does not exceed maximum.
- Round, convex mirror at front left for additional manual parking guidance with 60 cm diameter.
 CCTV system throughout the garage. CCTV footage is recorded and stored for 48 hours.
- Kiosk with 19" touchscreen, an RFID reader for cards, fobs or coins as well as a dispenser for cards or coins for transient parkers. The kiosks are located outside of the terminal and are connected to the main computer system for user interface with the system and to trigger parking and retrieval actions. A mobile app is available that can be customized based on development needs.
- Interior finishes should be of high-quality, durable, washable and easily maintained materials consistent with overall building architecture / theme.

PEDESTRIAN WALKWAY - FOOT TRAFFIC FROM LOBBY TO TERMINAL

Pedestrian walkways between the lobby and Entry / Exit Terminals are designed to ensure that drivers and pedestrian foot traffic can easily see each other.

LOBBY


The Lobby also contains kiosks for customers to retrieve their cars using the RFID card, fob or coin.

If credit card payment processing is required on the lobby kiosks, there will be additional charges for credit cards readers, additional required software and/or other components as required by the selected banking / transaction system.

The Lobby has two (2) 60-inch screen displays showing the locations of vehicles retrieved. The display includes vehicle ID, entry/exit terminal number for retrieval and time in and time out.

The Lobby also has a separate 42-inch display for viewing real time camera footage showing live vehicle movements inside the garage system of the facility and /or for promotional use, etc.

Customers can alternatively use the mobile app to initiate retrieval of their car.

Welcome

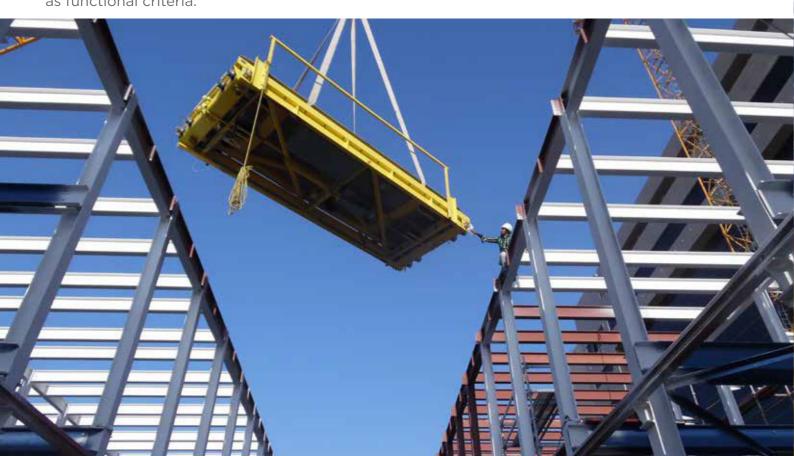
Scan With QR Code

Make easy payments

Vehicle Out Gate

HORIZONTAL TRANSPORT MACHINES (CARRIER MODULES)

Each level of the parking facility has two or more transport machines to move cars horizontally along the transport aisle. Integrated rack entry machines move the cars from the carrier modules into and out of the parking space.



EMPTY PALLET HANDLING

The Robotic Parking System includes an independent empty pallet handling system that operates separately from the vehicle transport machines and lifts moving the vehicles. This ensures that there is no interference and no reduction in the speed and capacity of parking or retrieval of vehicles.

FLEXIBLE FAÇADE -

The steel or concrete supporting construction of the Robotic Parking System will accept any variety of façades. The company installs its industrial lifts, machines, pallets and the computer control systems inside the supporting structure and never interferes with the façade. Entry / Exit Terminals can also be integrated into the façade environment while observing both visual as well as functional criteria.

DYNAMIC VALET OPERATION (OPTIONAL)

The Cimplicity software allows the owner to operate the garage dynamically. At any given time, according to the occupancy at a particular moment, garage rates can be displayed automatically outside the garage on message centers. Owners can attract more clients with special rates. The parameters are variable and can be set by the owner depending on market conditions at any time. This is a unique feature and an industry first!

Ask us more about e-park™.

INTEGRATED CAR WASH (OPTIONAL)

An automated brush-less car wash can be integrated within the Robotic Parking System at additional cost.

SECURE STORAGE

Spaces not utilized for parking can be used as very convenient storage spaces. To accommodate the amount of storage needed, pallets can be converted into containers of 19 feet x 7'- 4" x 6'-8" high (5.8 m x 2.2 m x 2.05 m) and placed in the same parking slots not used for parking vehicles. The loading and unloading of the containers would be performed in the Terminal area where cars enter and exit or, in separate loading/unloading terminals, which can be located throughout the facility.

The containers are treated the same way as pallets with cars, and the machinery will move them automatically to and from their respective storage locations upon request.

These containers can be airconditioned or refrigerated.

LOADING / UNLOADING TERMINALS (OPTIONAL)

To provide higher Peak Traffic (the number of cars in and out per hour) in the system, Robotic Parking Systems developed special Loading / Unloading Stations that can be installed on the side of the actual drive-in terminals. These specialized terminals are for the patron's convenience for loading or unloading the goods from the vehicle into the storage containers, or in case someone forgot something in the vehicle after it has already being transferred inside the system. Vehicles cannot be driven off these terminals, and they are only accessible through a man door. Special Loading / Unloading Terminals can be supplied at additional cost.

SPARE PARTS

Every proposal includes a spare parts package sufficient for one (1) year of operation.

DOCUMENTATION & TRAINING -

Robotic Parking Systems provides two complete sets of operation and maintenance manuals in English language as well as on-site training for owner's personnel.

INSURANCE & BONDING -

Our proposal includes customary insurance coverage. The proposal also includes insurance coverage for design Errors and Omissions / Professional Liability in the amount of \$1 million USD per occurrence and \$2 million USD in the aggregate.

Bonding can be provided for the construction portion of the project at additional costs.

TURNKEY DELIVERY -

30 YEARS OF EXPERIENCE AND EXCELLENCE IN AUTOMATIC PARKING - **TO YOUR SERVICE**

ALWAYS AHEAD | THE BIGGEST IDEAS IN AUTOMATIC PARKING | CHANGING THE DYNAMICS OF LAND USE

Robotic Parking Systems, Inc., 12812 60th Street North, Clearwater, FL, 33760, United States

Tel: +1 727-967-6881 Fax: +1 727-216-8947

Email: sales@roboticparking.com

www.roboticparking.com

